首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19611篇
  免费   4198篇
  国内免费   3997篇
测绘学   1033篇
大气科学   1791篇
地球物理   4545篇
地质学   11870篇
海洋学   3224篇
天文学   48篇
综合类   1543篇
自然地理   3752篇
  2024年   52篇
  2023年   270篇
  2022年   591篇
  2021年   873篇
  2020年   818篇
  2019年   842篇
  2018年   768篇
  2017年   871篇
  2016年   817篇
  2015年   947篇
  2014年   1244篇
  2013年   1460篇
  2012年   1178篇
  2011年   1327篇
  2010年   1246篇
  2009年   1263篇
  2008年   1274篇
  2007年   1304篇
  2006年   1406篇
  2005年   1176篇
  2004年   1104篇
  2003年   985篇
  2002年   921篇
  2001年   819篇
  2000年   735篇
  1999年   606篇
  1998年   515篇
  1997年   440篇
  1996年   335篇
  1995年   339篇
  1994年   299篇
  1993年   240篇
  1992年   176篇
  1991年   134篇
  1990年   96篇
  1989年   92篇
  1988年   59篇
  1987年   46篇
  1986年   27篇
  1985年   32篇
  1984年   18篇
  1983年   13篇
  1982年   6篇
  1981年   9篇
  1980年   9篇
  1979年   2篇
  1978年   12篇
  1977年   4篇
  1976年   2篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
31.
研究尼日尔三角洲东部深水区块发现,整个盆地从陆向洋具有3个大的构造分区:伸展拉张区、过渡区和挤压逆冲区。伸展区以大型同沉积断层伴生大量滚动背斜构造为特征,过渡区发育大量泥底辟构造,挤压区以复杂的逆冲叠瓦构造为主。通过分析形成机理,揭示东部深水转换带上M研究区构造特征,按构造的演化特征将该区构造分为泥底辟型、冲断-泥底辟混合型、逆冲型3种类型,提出研究区内的圈闭主要以构造-岩性圈闭为主,为尼日尔三角洲盆地深水勘探提供新的理论指导。  相似文献   
32.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
33.
Understanding the hydrological processes of colloids within the karst vadose zone is vital to the security of karst groundwater and providing appropriate paleohydrological explanations of colloid-facilitated metals in speleothem. This study addresses the mobilization mechanisms driving colloidal organic matter (COM) transport in the karst vadose zone using a 15-year long monthly monitoring dataset from a cave drip point (HS4) in Heshang Cave, Qingjiang Valley, China. Variations in COM concentrations were reported as the fluorescence difference values of raw and filtered (<0.22 μm) samples at an excitation wavelength of 320 nm and emission wavelength of ~400 nm. A fluorescence humification index (HIX) lower than 0.8 and an autochthonous index (BIX) higher than 1.2 indicated that the origin of COM was mainly from the karst vadose zone, rather than the soil zone. The COM concentration varied from 0.001 to 0.038 Raman Unit (RU), with evident seasonal fluctuations. Rising limbs for COM values occurred prior to rising limbs within a dripwater hydrograph; moreover, the COM peak values corresponding to the beginning of the increasing hydrograph generally suggested that the mobilization of COM reflected the movement of the air–water interface (AWI) in the karst vadose zone rather than rainfall intensity or flow velocity. COM peak values were positively correlated with the antecedent drying duration and negatively correlated with HIX values. These phenomena may be explained by the increased amount of organic matter that was aggregated and absorbed on the surface of carbonate in the karst vadose zone during a longer drying duration. Moreover, the longer drying duration was also beneficial to autochthonous biological activity, which subsequently decreased the HIX value of the organic matter in the karst vadose zone. The movement of AWI and the drying duration are both controlled by the outside weather conditions. This study is therefore conducive to evaluating the security of karst groundwater in response to climate change, and challenges prevailing paleoclimate interpretations of colloid-facilitated metal abundance timeseries reported from speleothems.  相似文献   
34.
The biodiversity hotspot region of the Eastern Himalayas consists of a vast freshwater network enriched with species diversity. Many small-scale torrential rivers and water reaches contribute to the species pool of all the major rivers by converging downstream. These reaches are most likely to be degraded at a faster rate as compared to the large-scale rivers following an increased rate of urbanization, habitat alterations, and changing climatic conditions. Therefore, this study aims to explore River Murti, which is a representative small scale river system characterized by a large altitudinal gradient and a diverse watershed area. Ichthyofaunal diversity (i.e., diversity, evenness & richness) and 21 environmental variables are measured through a tri-seasonal sampling effort conducted along 14 selected locations. A total of 41 fish species (including species belonging to 4 Near Threatened, 8 Vulnerable, and 1 Endangered) are found inhabiting this river. Ichthyofaunal assemblage is found to be primarily modulated by habitat diversity and landscape variables. Three Aquatic Ecological Systems (AES) have been identified along this river in a top-down approach based on recorded environmental variables. We have calculated an observed/expected ratio for each diversity indices along 14 locations based on predicted temporal variability using boosted regression (BRT) models. The evaluation of diversity status has been kept at 0.5 to account for a 50% loss or deviation from observed (O/E50). This evaluation has been successfully used to delineate AES1 with majorly “Impaired” status and thus ensures its importance in terms of species conservation. Our study indicates the contribution of 11 major environmental drivers modulating the species assemblage patterns in these AES. Amongst them, altitude, substrate coarseness, river morphology, and shelter availability are strongly associated with species diversity as per the BRT models. These underlying factors are also correlated with “basin pressure,” suggesting that anthropogenic disturbances, as well as the changing climate, might play an important role in the gradual change in environmental conditions, which in turn could cause a shift in species assemblage structure.  相似文献   
35.
The role of wave forcing on the main hydro-morphological dynamics evolving in the shallow waters of the nearshore and at river mouths is analyzed. Focus is mainly on the cross-shore dynamics that evolve over mildly sloping barred, dissipative sandy beaches from the storm up to the yearly timescale, at most. Local and non-local mechanisms as well as connections across three main inter-related subsystems of the nearshore – the region of generation and evolution of nearshore bars, river mouths and the swash zone – are analyzed. The beach slope is a major controlling parameter for all nearshore dynamics. A local mechanism that must be properly described for a suitable representation of wave-forced dynamics of all such three subsystems is the proper correlation between orbital velocity and sediment concentration in the bottom boundary layer; while specific dynamics are the wave–current interaction and bar generation at river mouths and the sediment presuspension at the swash zone. Fundamental non-local mechanisms are both infragravity (IG) waves and large-scale horizontal vortices (i.e. with vertical axes), both influencing the hydrodynamics, the sediment transport and the seabed morphology across the whole nearshore. Major connections across the three subsystems are the upriver propagation of IG waves generated by breaking sea waves and swash–swash interactions, the interplay between the swash zone and along-river-flank sediment transport and the evolution of nearshore sandbars. © 2019 John Wiley & Sons, Ltd.  相似文献   
36.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
37.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
38.
为提高混凝土剪力墙受弯性能计算的准确度,开展强震下混凝土剪力墙受弯性能试验研究。选取1个混凝土剪力墙对比试件和3个测试试件作为研究对象,对试件施加垂直荷载和水平荷载,模拟强烈地震作用力。试验前期准备工作完成后,建立分离式有限元模型,通过计算混凝土在受压和受拉状态下的损伤弹塑性刚度,完成对有限元模型中混凝土塑性损伤分析,在此基础上,计算混凝土剪力墙受弯承载力。利用有限元模型对3个测试试件进行模拟试验,结果表明,强烈地震后3个试件的荷载-位移曲线均与实际位移值接近,且混凝土剪力墙受弯承载力试验结果与实际值的误差在2%以内,表明试验研究方法具有一定的可行性,数值模拟结果较为准确。  相似文献   
39.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
40.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号